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Abstract—One of the benefits musicians derive from their

training is an increased ability to detect small differences

between sounds. Here, we asked whether musicians’ expe-

rience discriminating sounds on the basis of small acous-

tic differences confers advantages in the subcortical

differentiation of closely related speech sounds (e.g., /ba/

and /ga/), distinguishable only by their harmonic spectra

(i.e., their second formant trajectories). Although the sec-

ond formant is particularly important for distinguishing

stop consonants, auditory brainstem neurons do not

phase-lock to its frequency range (above 1000 Hz). Instead,

brainstem neurons convert this high-frequency content

into neural response timing differences. As such, speech

tokens with higher formant frequencies elicit earlier brain-

stem responses than those with lower formant frequen-

cies. By measuring the degree to which subcortical

response timing differs to the speech syllables /ba/, /da/,

and /ga/ in adult musicians and nonmusicians, we reveal

that musicians demonstrate enhanced subcortical discrim-

ination of closely related speech sounds. Furthermore, the

extent of subcortical consonant discrimination correlates

with speech-in-noise perception. Taken together, these

findings show a musician enhancement for the neural pro-

cessing of speech and reveal a biological mechanism con-

tributing to musicians’ enhanced speech perception in

noise. � 2012 IBRO. Published by Elsevier Ltd. All rights

reserved.
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INTRODUCTION

Musicians develop a number of auditory skills, including

the ability to track a single instrument embedded within

a multitude of sounds. This skill relies on the perceptual

separation of concurrent sounds that can overlap in pitch

but differ in timbre. One contributor to timbre is a sound’s

spectral fine structure: the amplitudes of different harmon-

ics and how they change over time (Krimphoff et al., 1994;

Caclin et al., 2005, 2006; Kong et al., 2011). Conse-

quently, it is not surprising that musicians, compared to

nonmusicians, demonstrate enhanced perception of rapid

spectro-temporal changes (Gaab et al., 2005) and har-

monic differences (Musacchia et al., 2008; Zendel and

Alain, 2009), as well as having a greater neural represen-

tation of harmonics (Koelsch et al., 1999; Shahin et al.,

2005; Musacchia et al., 2008; Lee et al., 2009; Parbery-

Clark et al., 2009a; Strait et al., 2009; Zendel and Alain,

2009).

Harmonic amplitudes are one of the most important

sources of information for distinguishing speech sounds.

During speech production, individuals modify the filter

characteristics of the vocal apparatus to enhance or

attenuate specific frequencies, creating spectral peaks

(i.e., formants) that distinguish vowels and consonants.

Given the similarity of the acoustic cues that characterize

speech and music—that is, differences in the distribution

of energy across the harmonic spectrum—musicians’

extensive experience distinguishing musical sounds may

provide advantages for processing speech (Tallal and

Gaab, 2006; Lee et al., 2009; Parbery-Clark et al.,

2009a; Kraus and Chandrasekaran, 2010; Besson et al.,

2011; Chobert et al., 2011; Marie et al., 2011a,b; Patel,

2011; Shahin, 2011; Strait and Kraus, 2011a,b). This

hypothesis is supported by evidence that musicians dem-

onstrate enhanced auditory function throughout the audi-

tory pathway. Specifically, musicians have enhanced

neural responses to music (Fujioka et al., 2004; Shahin

et al., 2005; Musacchia et al., 2007; Lee et al., 2009; Bid-

elman et al., 2011a,b) as well as speech (Musacchia

et al., 2007; Parbery-Clark et al., 2009a,b; Bidelman

and Krishnan, 2010), including changes in pitch, duration,

intensity, timbre and voice onset time (Pantev et al., 2001;

Schon et al., 2004; Magne et al., 2006; Moreno and Bes-

son, 2006; Besson et al., 2007, 2011; Marques et al.,

2007; Wong et al., 2007; Shahin et al., 2008; Tervaniemi

et al., 2009; Chandrasekaran et al., 2009a; Chobert et al.,

2011; Marie et al., 2011a,b).

The auditory brainstem response (ABR) is an

evoked response of subcortical origin (Galbraith et al.,

2000; Chandrasekaran and Kraus, 2010; Warrier
d.
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Table 1. Participants’ musical practice histories. Age at which musical

training began, years of musical training and major instrument(s) are

indicated for all participants. Means for years of musical training and

age at onset for the nonmusicians were calculated from the eight

participants who had musical experience.

Age of

onset

(years)

Years of

training

(years)

Instrument(s)

Musician

#1 5 16 Bassoon/piano

#2 4 26 Cello

#3 7 19 Cello

#4 5 13 Flute

#5 5 19 Piano

#6 6 17 Piano

#7 5 16 Piano

#8 6 26 Piano

#9 6 12 Piano

#10 6 15 Piano

#11 6 19 Piano/horn

#12 6 12 Piano/percussion

#13 5 18 Piano/percussion

#14 7 16 Piano/voice

#15 6 19 Piano/voice

#16 5 20 Piano/voice

#17 5 14 Piano/voice

#18 3 18 Violin

#19 5 14 Violin

#20 5 16 Violin

#21 6 15 Violin

#22 5 15 Violin

#23 5 23 Violin/piano

Mean 5.4 17.3

Nonmusician

#24 11 2 Flute

#25 9 2 Flute

#26 16 1 Guitar

#27 9 3 Guitar

#28 13 1 Piano

#29 12 2 Piano

#30 9 3 Piano/voice

#31 12 3 Voice
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et al., 2011) that faithfully represents spectral compo-

nents of incoming sounds up to �1000 Hz through neu-

ral phase-locking to stimulus periodicity (Marsh et al.,

1974; Liu et al., 2006). The frequency range of the sec-

ond formant, although particularly important for distin-

guishing consonants, falls above this phase-locking

range for many speech tokens. The tonotopic organiza-

tion of the auditory system overcomes this, as higher

frequencies represented at the base of the cochlea

result in earlier neural responses relative to lower

frequencies (Gorga et al., 1988). Consequently, conso-

nants with higher frequency second formants elicit

earlier ABRs than sounds with lower frequency second

formants (Johnson et al., 2008).

The second formant is the most difficult acoustic fea-

ture to detect when speech is presented in noise (Miller

and Nicely, 1955). Accordingly, the robustness of its neu-

ral encoding contributes to the perception of speech in

noise (SIN). Given that musicians outperform nonmusi-

cians on SIN perception (Parbery-Clark et al., 2009b;

Zendel and Alain, 2011), we asked whether musicians

demonstrate greater subcortical differentiation of speech

syllables that are distinguishable only by their second for-

mant trajectories. To this aim, we assessed ABRs to the

speech syllables /da/, /ba/, and /ga/ and SIN discrimina-

tion in adult musicians and nonmusicians. Timing differ-

ences in ABRs can be objectively measured by

calculating response phase differences (Skoe et al.,

2011; Tierney et al., 2011) and are present in both

scalp-recorded and near-field responses recorded from

within the inferior colliculus (Warrier et al., 2011), sug-

gesting that they reflect a fundamental characteristic of

temporal processing. We calculated the phase differ-

ences between subcortical responses to these syllables.

We expected musicians to demonstrate greater phase

shifts between speech-evoked ABRs than nonmusicians,

indicating more distinct neural representations of each

sound. Given the importance of accurate neural represen-

tation for SIN perception, we expected the degree of

phase shift to relate to SIN perception.
#32 0 0 N/A

#33 0 0 N/A

#34 0 0 N/A

#35 0 0 N/A

#36 0 0 N/A

#37 0 0 N/A

#38 0 0 N/A

#39 0 0 N/A

#40 0 0 N/A

#41 0 0 N/A

#42 0 0 N/A

#43 0 0 N/A

#44 0 0 N/A

#45 0 0 N/A

#46 0 0 N/A

#47 0 0 N/A

#48 0 0 N/A

#49 0 0 N/A

#50 0 0 N/A

Mean 11.4 2.1
EXPERIMENTAL PROCEDURES

Fifty young adults (ages 18–32, mean = 22.0, SD = 3.54) par-

ticipated in this study. Twenty-three musicians (15 female) all

started musical training by the age of 7 (mean = 5.14,

SD= 1.03) and had consistently practiced a minimum of three

times a week (mean = 15.9 years, SD = 4.0). Twenty-seven

(15 female) had received <3 years of music training and were

categorized as nonmusicians. Nineteen of these nonmusicians

subjects had received no musical training at any point in their

lives. Eight had less than three years (mean= 2.1, SD=

0.8) of musical training which started after the age of 9 (range

9–16, mean = 11.28, SD= 2.6). See Table 1 for musical prac-

tice histories. All musicians reported that their training included

experience playing in ensembles. All participants were right-

handed, had pure-tone air conduction thresholds 620 dB HL

from 0.125–8 kHz and had normal click-evoked ABRs. The

two groups did not differ in age (F(1,49) = 0.253, p= 0.617),

sex (X2(1,N= 50) = 0.483, p= 0.569), hearing (F(1,35) =
0.902, p= 0.565) or nonverbal IQ (F(1,49) = 2.503, p=

0.120) (Test of Nonverbal Intelligence; Brown et al., 1997).



Fig. 1. Second formant trajectories of the three speech stimuli (left). The speech sounds /ga/, /da/, and /ba/ differ in their second formant trajectories

during the formant transition period (5–50 ms) but are identical during the vowel /a/ (50–170 ms). Illustrative example of the neural timing differences

elicited by the three stimuli in the formant transition region (right). Consistent with the auditory system’s tonotopic organization that engenders earlier

neural response timing to higher frequencies relative to lower frequencies, the neural response timing to /ga/ is earlier than the responses to /da/ and

/ba/ during the formant transition region.

Fig. 2. Spectrograms of the three speech stimuli. The spectrograms

of the three speech stimuli /ga/ (top), /da/ (middle), /ba/ (bottom) differ

only in their second formant trajectory.
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Behavioral testing

Speech-in-noise perception was assessed using the Quick

Speech-in-Noise Test (QuickSIN, Etymotic Research), a non-

adaptive test that presents a target sentence embedded in

four-talker babble through insert earphones (ER-2, Etymotic

Research, Inc., Elk Grove Village, IL, USA). Participants were

tested on four six-sentence lists, with each sentence containing

five key words. For each list, the initial target sentence was pre-

sented at a signal-to-noise ratio (SNR) of +25 dB and five subse-

quent sentences were presented with a progressive 5 dB
reduction in SNR per sentence, ending at 0 dB SNR. Recall of

the sentences occurred immediately after each sentence was

heard. The length of the sentences was 8.5 + 1.3 words. These

sentences included (target words underlined): ‘‘The square peg

will settle in the round hole.’’ and ‘‘The sense of smell is better

than that of touch.’’ The number of total target words correctly

recalled was subtracted from 25.5 to calculate an SNR loss

(Killion et al., 2004). Performance across all four lists was

averaged; lower scores indicated better performance.
Stimuli

The three speech syllables /ga/, /da/, and /ba/ were constructed

using a Klatt-based synthesizer (Klatt, 1980). Each syllable is

170 ms in duration with an unchanging fundamental frequency

(F0 = 100 Hz). For the first 50 ms of all three syllables, consisting

of the transition between the consonant stop burst and the vowel,

the first and third harmonics change over time (F1 = 400–

720 Hz; F3 = 2580–2500 Hz) whereas the fourth, fifth and sixth

harmonics remain steady (F4 = 3300 Hz; F5 = 3750 Hz; F6 =

4900 Hz). The syllables are distinguished by the trajectories of

their second formants: /ga/ and /da/ fall (from 2480 to 1240 Hz

and 1700 to 1240 Hz, respectively) while /ba/ rises (from 900 to

1240 Hz) (Fig. 1, left; Fig. 2). The three sounds are identical for

the duration of the vowel /a/ (50–170 ms). The three syllables

/ga/, /da/, and /ba/ were presented pseudo-randomly within the

context of five other syllables with a probability of occurrence of

12.5%. The other five speech sounds were also generated using

a Klatt-based synthesizer and differed by formant structure (/du/),

voice onset time (/ta/), F0 (/da/ with a dipping contour, /da/ with an

F0 of 250 Hz), and duration (163 ms /da/). Syllables were pre-

sented in a single block with an interstimulus interval of 83 ms.

The recording session lasted 35 ± 2 min. Because we were

interested in quantifying the effects of neural discrimination of

speech sounds differing only in formant structure, only responses

to /ga/, /da/, and /ba/ are assessed here. See Chandrasekaran

et al. (2009b) for further descriptions of the other syllables.
Procedure

ABRs were differentially recorded at a 20 kHz sampling rate

using Ag–AgCl electrodes in a vertical montage (Cz active, FPz

ground and linked-earlobe references) in Neuroscan Acquire
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4.3 (Compumedics, Inc., Charlotte, NC, USA). Contact imped-

ance was 2 kX or less across all electrodes. Stimuli were pre-

sented binaurally at 80 dB SPL with an 83-ms inter-stimulus

interval (Scan 2, Compumedics, Inc.) through insert earphones

(ER-3, Etymotic Research, Inc.). The speech syllables were pre-

sented in alternating polarities, a technique commonly used in

brainstem recordings to minimize the contribution of stimulus arti-

fact and cochlear microphonic. Since the stimulus artifact and

cochlear microphonic follow the phase of the stimulus, when

the responses to alternating polarities are added together the arti-

facts are reduced, leaving the phase-invariant component of the

response intact (see Skoe and Kraus, 2010 for more details). To

change a stimulus from one polarity to another, the stimulus

waveform was inverted by 180�. During the recording, subjects

watched a silent, captioned movie of their choice to facilitate a

restful state. Seven hundred artifact-free trials were collected to

each stimulus.

ABRs were bandpass filtered offline from 70 to 2000 Hz

(12 dB/octave roll-off) to maximize auditory brainstem contribu-

tions to the signal and to reduce the inclusion of low-frequency

cortical activity (Akhoun et al., 2008). Trials with amplitudes

exceeding ±35 lV were rejected as artifacts and the responses

were baseline-corrected to the pre-stimulus period (�40 to 0 ms).

All data processing was conducted using scripts generated in

Matlab 2007b (The Mathworks, Natick, 7.5.0, MA, USA).

Phase analysis

The cross-phaseogram was constructed according to Skoe et al.

(2011). First, we divided the response into overlapping 40-ms

windows starting at 20-ms before the onset of the stimulus, with

each window separated from the next by 1 ms. The center time

point of each window ranged from 0 to 170 ms, with a total of

170 windows analyzed. These windows were baseline-corrected

using Matlab’s detrend function and ramped using a Hanning

window. Within each 40-ms window, we then applied the Matlab

cross-power spectral density function to each pair of responses—

for example, the response to /da/ and the response to /ba/—and

converted the resulting spectral power estimates to phase

angles.

Because the phase shifts between pairs of responses to con-

sonants reported in Skoe et al. (2011) were largest from 400 to

720 Hz, we restricted our analyses to this frequency region.

The cross-phaseogram was split into two time regions according

to the acoustic characteristics of the stimuli: a time region corre-

sponding to the dynamic formant transition (5–45 ms) and an-

other corresponding to the sustained vowel (45–170 ms).

Repeated-measures ANOVAs were run on the two time regions

with group as the fixed factor (musician/nonmusician) and speech-

syllable pairing as between-subject factor (/ga/–/ba/, /da/–/ba/,

and /ga/–/da/). Post-hoc ANOVAs compared the amount of phase

shift in musicians and nonmusicians for each condition and

Pearson correlations were conducted to explore the relationship

between the amount of phase shift and QuickSIN performance.

All statisticswereconducted inMatlab2007b; results reportedhere

reflect two-tailed significance values.

RESULTS

Musicians demonstrated greater neural differentiation of

the three speech sounds, with musicians’ average phase

shifts during the transition period across conditions being

larger than the average shift for nonmusicians (main ef-

fect of group F(1,48) = 7.58, p= 0.008). Musicians

demonstrated a greater phase shift than nonmusicians

between 400–720 Hz and 5–45 ms for /ga/ versus /ba/

(F(1,49) = 12.282, p= 0.001) and for /da/ versus /ba/

(F(1,49) = 5.69, p= 0.02) (Fig. 3). Musicians and non-

musicians did not, however, show different degrees of
phase shift for the /ga/ versus /da/ stimulus pairing

(F(1,49) = 0.443, p= 0.51), likely due to the fact that

the /ga/–/da/ syllable pair is the most acoustically similar

of the stimulus pairings. A greater number of response

trials might have increased our ability to detect such sub-

tle differences between these two syllables. During the

control time range (Fig. 3), which reflects the neural

encoding of the vowel, there was no effect of group

(F(1,49) = 0.549, p= 0.46), stimulus pairing (F(2,49) =
0.471, p= 0.626), or group by stimulus pairing interaction

(F(2,60) = 0.252, p= 0.778).

Collapsing across both groups did not reveal a

tendency for phase shifts for the stimulus pairings to differ

in magnitude (F(2,96) = 0.836, p= 0.437), a result

previously reported by Skoe et al. (2011), likely due to

the fact that only 700 sweeps were collected in this study

versus the 6000 collected for Skoe et al. (2011). The

musicians and nonmusicians, however, significantly dif-

fered in the extent to which the stimulus pairings gave rise

to unique phase shift signatures (significant group � stim-

ulus pairing interaction, F(2,96) = 5.719, p= 0.005).

Specifically, degree of phase shift differed between the

stimulus pairings in musician responses (F(2,21) =
10.083, p= 0.001) but not in nonmusician responses

(F(2, 25) = 0.901, p= 0.419).

In addition to having greater neural distinction of these

speech syllables, musicians outperformed nonmusicians

on the QuickSIN test (F(1,49) = 15.798, p< 0.001).

Speech-in-noise performance correlated with the extent

of phase shifts across two out of the three stimulus

pairings (/da/–/ba/: r= �0.372, p= 0.01; /ga/–/ba/:

r=�0.485, p=0.008; /ga/–/da/: r=�0.042, p=0.773;

Fig. 4).

Within the musician group, the extent of musical

training did not correlate with the amount of phase shift

(/ga/–/ba/: r= 0.157, p= 0.474, /da/–/ba/: r= �0.254,
p= 0.242; /ga/–/da/: r= 0.206, p= 0.347).
DISCUSSION

Here, we reveal that musicians have more distinct subcor-

tical representations of contrastive speech syllables than

nonmusicians and that the extent of subcortical speech

sound differentiation correlates with speech perception

in noise. These findings demonstrate that musicians pos-

sess a neural advantage for distinguishing speech sounds

that may contribute to their enhanced speech-in-noise

perception. These results provide the first neural evidence

that musicians possess an advantage for representing dif-

ferences in formant frequencies.

Extensive research has documented enhancements

in the processing of an acoustic feature with repetition in

a task-relevant context. Indeed, interactive experiences

with sound shape frequency mapping throughout the

auditory system, with task-relevant frequencies becoming

more robustly represented in auditory cortex (Fritz et al.,

2003, 2007, 2010). Repetitive stimulation of auditory cor-

tical neurons responsive to a particular frequency similarly

leads to an increase in the population of responding neu-

rons located within the inferior colliculus and the cochlear

nucleus that phase-lock to that frequency (Gao and Suga,



Fig. 3. Musicians show greater subcortical differentiation of speech sounds than nonmusicians. The neural timing difference between the brainstem

responses to the syllables /ga/ and /ba/ (left) and /da/ and /ba/ (right) can be measured as phase shifts. Warm colors indicate that the response to

/ga/ led the response to /ba/ in the /ga/ versus /ba/ comparison and that /da/ let the response to /ba/ in the /da/ versus /ba/ comparison; cool colors

indicate the opposite. Musicians demonstrate clear phase differences in responses to these syllables during the transition region (top). These phase

shifts are considerably weaker in nonmusicians (middle). The average phase shift and standard error (dotted line) over the transition portion plotted

across frequency (bottom). Musicians have larger phase shifts during the formant transition than nonmusicians, with the greatest phase shifts

occurring between 400 and 720 Hz.
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1998; Yan and Suga, 1998; Luo et al., 2008). Again, this

effect is strengthened if the acoustic stimulation is behav-

iorally relevant (Gao and Suga, 1998, 2000). These corti-

cal modifications of subcortical processing are likely

brought about via the corticofugal system—a series of

downward-projecting neural pathways originating in the

cortex which terminate at subcortical nuclei (Suga and

Ma, 2003) as well as the cochlea (Brown and Nuttall,

1984). Attention and behavioral relevance can, therefore,

lead to broader representation of a frequency throughout

the auditory system.

Musicians spend many hours on musical tasks that re-

quire fine spectral resolution. For example, musicians

learn to use spectral cues to discriminate instrumental tim-

bres—a skill that is particularly useful for ensemble musi-

cians who regularly encounter simultaneous instrumental

sounds that overlap in pitch, loudness and duration but dif-

fer in timbre. Timbre is perceptually complex and relies in

part upon spectro-temporal fine structure (i.e., relative

amplitudes of specific harmonics) (Krimphoff et al., 1994;

Caclin et al., 2005, 2006; Kong et al., 2011). Thus, musi-
cians’ goal-oriented, directed attention to specific acoustic

features such as timbre may, via the corticofugal system,

enhance auditory processing of the rapidly-changing fre-

quency components of music, speech and other behavior-

ally-relevant sounds. This idea is supported by research

demonstrating that musicians have heightened sensitivity

to small harmonic differences (Musacchia et al., 2008;

Zendel and Alain, 2009) as well as a greater neural repre-

sentation of harmonics than nonmusicians (Koelsch et al.,

1999; Shahin et al., 2005; Musacchia et al., 2008; Lee

et al., 2009; Strait et al., 2009; Zendel and Alain, 2009;

Parbery-Clark et al., 2009a).

That musicians must learn to map slight changes in

relative harmonic amplitudes to behavioral relevance, or

meaning, may contribute to these auditory perceptual

and neurophysiological enhancements (Kraus and

Chandrasekaran, 2010). Here, we propose that the

fine-tuning of neural mechanisms for encoding high

frequencies within a musical context leads to enhanced

subcortical representation of the higher frequencies

present in speech, improving musicians’ ability to neurally



Fig. 4. Relationships between phase shifts and speech-in-noise perception. The extent of the phase shifts between the responses to /ga/ and

/ba/ (left) and /da/ and /ba/ (right) correlate with speech-in-noise perception (/ga/–/ba/: r = �0.41, p= 0.021, /da/–/ba/: r= �0.73, p< 0.0001).

[Note: Axes have been flipped to show better SIN perception (more negative SNR) in the upward direction.]
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process speech formants. This evidence can be inter-

preted alongside a wealth of research substantiating

enhanced cortical anatomical structures (e.g., auditory

areas) (Pantev et al., 1998; Zatorre, 1998; Schneider

et al., 2002; Sluming et al., 2002; Gaser and Schlaug,

2003; Bermudez and Zatorre, 2005; Lappe et al., 2008;

Hyde et al., 2009) and circuitry connecting areas that

undergird language processing (e.g., the arcuate fascicu-

lus; Wan and Schlaug, 2010; Halwani et al., 2011) in

musicians. This may account for their more robust neural

speech-sound processing compared to nonmusicians

(Schon et al., 2004; Magne et al., 2006; Moreno and Bes-

son, 2006; Marques et al., 2007; Tervaniemi et al., 2009;

Besson et al., 2011; Chobert et al., 2011; Marie et al.,

2011a,b). Taken together, this work lends support to our

interpretation that musical training is associated with audi-

tory processing benefits that are not limited to the music

domain. We further propose that the subcortical auditory

enhancements observed in musicians, such as for

speech-sound differentiation, may reflect their cortical

distinctions by means of strengthened top-down neural

pathways that make up the corticofugal system for

hearing. Such pathways facilitate cortical influences on

subcortical auditory function (Gao and Suga, 1998,

2000; Yan and Suga, 1998; Suga et al., 2002; Luo

et al., 2008) and have been implicated in auditory learning

(Bajo et al., 2010). It is also possible that over the course

of thousands of hours of practice distinguishing between

sounds on the basis of their spectra, a musician’s auditory

brainstem function is locally, pre-attentively modified.

Top-down and local mechanisms likely work in concert

to drive musicians’ superior neural encoding of speech.

Although we interpret these results in the context of

training-related enhancements in musicians compared

to nonmusicians, our outcomes cannot discount the pos-

sibility that the musician’s advantage for speech process-

ing reflects genetic differences that exist prior to training.

Future work is needed to tease apart the relative contribu-

tions of experience and genetics to differences in the sub-

cortical encoding of speech. Although we interpret our

results as reflecting the influence of musical training on

the neural processing of speech, we did not find a corre-

lation between number of years of musical training and
neural distinction of speech sounds. One possible expla-

nation for this is that our musicians were highly trained

and had extensive musical experience; the benefits

accrued from musical practice may be most significant

during the first few years of training. If so, we would

expect a group of individuals with minimal to medium

amounts of musical experience to show a significant

correlation between years of practice and speech-sound

distinction. An alternate interpretation is that our results

reflect innate biological differences between musicians

and nonmusicians; enhanced subcortical auditory pro-

cessing may be one of the factors that lead individuals

to persevere with musical training.
More precise neural distinction in musicians relates
with speech-in-noise perception

Speech perception in real-world listening environments is

a complex task, requiring the listener to track a target

voice within competing background noise. This task is fur-

ther complicated by the degradation of the acoustic signal

by noise, which particularly disrupts the perception of fast

spectro-temporal features of speech (Brandt and Rosen,

1980). While hearing in noise is challenging for everyone,

musicians are less affected by the presence of noise than

nonmusicians (Parbery-Clark et al., 2009a,b, 2011; Bidel-

man et al., 2011a,b; Zendel and Alain, 2011). Previous

research has found that speech-in-noise perceptual ability

relates to the neural differentiation of speech sounds in

children (Hornickel et al., 2009). Here, we extend this find-

ing and show that adult musicians with enhanced SIN per-

ception demonstrate a greater neural distinction of

speech sounds, potentially providing a biological mecha-

nism which can account for the musician advantage for

hearing in adverse listening conditions.

While our nonmusician group, all normal- to high-func-

tioning adults, demonstrated a range of SIN perception

ability, they did not show significant phase shifts. Given

the correlation between phase shifts and SIN perception,

it is possible that the representation of high-frequency

differences via timing shifts facilitates, but is not strictly

necessary for, syllable discrimination. An alternate

explanation is that musicians have such robust neural
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representation of sound that subcortical differentiation of

speech sounds can be clearly seen in an average com-

prised of only 700 trials. It is expected that nonmusicians

would also demonstrate differentiated neural responses

but only with a greater number of trials, as reported in

nonmusician children (Skoe et al., 2011).

Certain populations, such as older adults (Ohde and

Abou-Khalil, 2001) and children with reading impairments

(Tallal and Stark, 1981; Maassen et al., 2001; Serniclaes

et al., 2001; Serniclaes and Sprenger-Charolles, 2003;

Hornickel et al., 2009), demonstrate decreased perceptual

discrimination of contrasting speech sounds. This may be

due to the impaired processing of high-frequency spectro

temporal distinctions that occur over the sounds’ first

40 ms (i.e., their formant transitions). SIN perception is

particularly difficult for these populations (older adults:

Gordon-Salant and Fitzgibbons, 1995; children with read-

ing impairments: Bradlow and Kraus, 2003). Indeed, chil-

dren with poor reading and/or SIN perception show

reduced neural differentiation of the same stop consonants

(/ba/, /da/, and /ga/) used in the present study, thus provid-

ing a neural index of these behavioral difficulties (Hornickel

et al., 2009). Musicians’ enhanced subcortical differentia-

tion of contrasting speech syllables suggests that musical

training may provide an effective rehabilitative approach

for children who experience difficulties with reading and

hearing in noise. Future work could directly test the impact

of musical training on both subcortical representations of

speech sounds and language skills by randomly assigning

music lessons or an auditory-based control activity to indi-

viduals with reading and speech perception impairments.

Given that the effects of musical training on speech-

syllable discrimination may stem from musicians’ experi-

ence with high-frequency spectro-temporal features that

distinguish instrumental timbres, a training regimen that

emphasizes timbre perception—e.g., ensemble work—

may lead to enhanced speech-sound discrimination and

related improvements in reading and SIN perception.

CONCLUSION

Here, we demonstrate that musicians show greater neural

distinction between speech syllables than nonmusicians

and that the extent of this neural differentiation correlates

with the ability to perceive speech in noise. This musician

enhancement may stem from their extensive experience

distinguishing closely related sounds on the basis of tim-

bre. We suggest that musical training may improve speech

perception and reading skills in learning-impaired children.
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